Presentation

Friday, July 17, 2020 11:14 AM

Stanley Lemma 3.1:

$$X_{p} := \sum_{\substack{K \\ proper}} X_{K(V_{1})} X_{K(V_{2})} \cdots X_{K(V_{d})} = \sum_{\substack{d \in \mathcal{Z}(P_{1},W)}} Q_{D(d)}$$

Quasi-Symmetric Functions:
Definition: Given a power serves
$$F(x_{i_1}, x_{2},...)$$
,
 $[X_{i_1}^{\alpha_1}, X_{i_2}^{\alpha_2}, ..., X_{i_k}^{\alpha_k}] F(x)$ is the coefficient of $X_{i_1}^{\alpha_1}, X_{i_2}^{\alpha_k}, ..., X_{i_{k_k}}^{\alpha_{k_k}}]$
in $F(x)$.

$$E_{X} : 2e_{2} = P_{1}^{2} - P_{2} = (X_{1} + X_{2} + \dots)(X_{1} + X_{2} + \dots) - (X_{n}^{2} + X_{n}^{2} + \dots)$$

So if $F(X) = 2e_{2}$, $[X_{1}, X_{2}]F(X) = 2$, $[X_{n}^{2}]F(X) = 0$ V KeW.

Definition: A power series
$$\vec{r}$$
 quasi-symmetriz if
 $\begin{bmatrix} X_{i_1}^{\alpha'_1} & X_{i_2}^{\alpha'_k} \end{bmatrix} F(X) = \begin{bmatrix} X_{j_1}^{\alpha'_1} & X_{j_k}^{\alpha'_k} \end{bmatrix} F(X)$ where
the indexing sequences are strictly increasing.

Examples/Unexamples $I_{1} = f(x_{1}, x_{2}, X_{3}, X_{4}) = X_{1}^{2} X_{2} X_{3} + X_{1}^{2} X_{4} X_{4} + X_{1}^{2} X_{3} X_{4} + X_{2}^{2} X_{3} X_{4}$ \checkmark 2. $f(x_{y,...}) = 1$ 3. $f(X_1, X_2, X_3) = 2 X_1 X_2 X_3 - 2 X_1^2 X_3$ \times

$$Q_d \& Q_{s,d}$$
:
Definition: Q_d is the set of degree d homogeneous q.s. Functions.
 Q_d forms a vector space (over say Q).

 \checkmark

So
$$Q_d$$
 has a basis $Q_{s,d}$ Known as the fundamental basis.
 $Q_{s,d} = \sum_{i_1 \leq i_1 \leq \cdots \leq i_d} X_{i_1} X_{i_1} \cdots X_{i_d}$
 $i_3 \leq i_{3i}$ if $j \in S \leq [2-i]$
 E_X : $Q_{cd-ij,d} = \sum_{i_1 \leq i_1 \leq \cdots \leq i_d} X_{i_1} X_{i_1} \cdots X_{i_d} = e_d$
 $Q_{\emptyset,d} = \sum_{i_1 \leq i_1 \leq \cdots \leq i_d} X_{i_1} X_{i_2} \cdots X_{i_d} = h_d$

Definition: A poset P is a set of elements with a binary
relation
$$\leq$$
 S.t. if a,b,c \in P
(1) $\alpha \leq \alpha$
(2) $\alpha \leq b$, $b \leq \alpha \Rightarrow \alpha = b$
(3) $\alpha \leq b$, $b \leq c \Rightarrow \alpha \leq c$

Very grounded example used for the rest of the presentation:
Lot G be the poset with elements
$$E_{r.L}$$
, Caitlin, friit, friit shacks, 3rd amendment
 $E = L = f = S = 3^{rd}$
 $E < C$, $f < E$, $f < S$, $S < C$, $S < 3^{rd}$

Presentation Pg 2

Friday, July 17, 2020 11:55 AM

Linear extension: A linear extension of a poset P, is a bijection $\alpha: P \rightarrow [d]$ s.t. if a, b $\in P$ a < b, H_n $\alpha(a) < \alpha(b)$.

Ex.
$$\alpha_{1} = \begin{pmatrix} 3^{3^{4}} f s & C & E \\ 5 & 1 & 3 & 4 & 2 \end{pmatrix}$$

 $\alpha_{2} = \begin{pmatrix} 3^{3^{4}} f s & C & E \\ 3 & 1 & 2 & 5 & 4 \end{pmatrix}$
 $G = \begin{pmatrix} 3^{3^{4}} f s & C & E \\ 3 & 1 & 2 & 5 & 4 \end{pmatrix}$

An order revusing linear extension of P, W, is a linear extension but with if a < b for $a, b \in P$, The W(a) > W(b).

$$E_{X}, \qquad \omega = \begin{pmatrix} 3^{\prime *} f & S & \zeta & E \\ 3 & 5 & 4 & 1 & 2 \end{pmatrix}$$

Since
$$\alpha_{ij} \cup : P \rightarrow [d]$$
 (bijerbuly), wo α_i^{-1} is a permutation of [d]
Ex. Recall $\alpha_i = \begin{pmatrix} 3^{id} f & 5 & C & E \\ 5 & 1 & 3 & 4 & 2 \end{pmatrix}$ then
 $\omega_0 \alpha_i^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 4 & 1 & 3 \end{pmatrix}$

Definition: The desant set of a, D(a), is {:: a;>a;...} for a sequence [a:3.

$$E_{X}: D(\omega,\alpha_{1}^{-1}) \equiv D(\alpha) = D(52413) = \xi_{1,X,3,X} = \{1,3\}$$

Definition:
$$L(P, w) = \{ \alpha : \alpha \text{ is a linear extension of } P \}$$

So we understand
$$\sum_{\alpha \in \mathcal{I}(P,\omega)} Q_{D(\alpha)}$$
.
So we understand $\sum_{\alpha \in \mathcal{I}(P,\omega)} Q_{D(\alpha)}$.
2. Find α
3. Find $D(\alpha)$
4. Write us som $Q_{D(\alpha)}$
 $X_{p} := \sum_{\substack{K \\ P^{*}p^{*}p^{*}p^{*}}} X_{K(v_{0})} X_{K(v_{0})}$ where K proper means

if a, b eP& a < b, the K(a) < K(b).

Example:
$$X_{G} = \sum_{K} X_{K(3')} X_{K(f)} X_{K(s)} X_{K(l)} X_{K(E)}$$

s.t. $K(f) < k(3), K(s) < k(c), K(s) < k(3'), K(l) < k(E)$
 $K(E) < K(l)$

Notice the it is possible to get
$$X_{i}X_{i}^{2}X_{i}^{2}$$
 by
 $K(f) < (K(E) = K(S)) < (K(3^{rd}) = K(C)).$
So colorings which look the same yield all possible $X_{i_{1}}^{u_{1}} \dots X_{i_{R}}^{d_{K}}$ terms.
So maybe there's $\kappa_{A}^{u_{1}}$ connection between colorings be $EX_{i_{1}}^{u_{1}} \dots X_{i_{R}}^{u_{n}}]X_{p}$
b $Q_{s,d}$. (Hint: I chose $X_{i_{1}}X_{i_{2}}^{2}X_{i_{3}}^{2}$ because it looks like
 $X_{i_{1}}X_{i_{3}}X_{i_{3}}X_{i_{3}}$ where if $K \in D(\alpha_{i}) = \{1,3\}$, $J_{K} < J_{KH}$ & if
 $K \notin D(\alpha_{i}) \setminus \{5\}$, $J_{K} = J_{KH}$).

Example, find X G using
$$\sum_{\alpha' \in \mathcal{I}(P,\omega)} Q$$
 D(α)
Exercise: Convince Yourself $\sum_{\alpha' \in \mathcal{I}(G,\omega)} Q$ D(α) = $\sum_{\substack{\alpha' \in \mathcal{I}(Y,\omega) \\ p \neq m'}} X_{k(s')} X_{k(n)} X_{k(s)} X_{k(s)$

Recall
$$G = \sum_{i=1}^{3} \sum_{i=1}^{4} \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{i=1}^{3} \sum_{i=$$